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Abstract. The Born effective charge, Z∗, that describes the polarization created by collective
atomic displacements, can be computed from first principles following different techniques. We
establish the connections existing between these different formulations, and analyse the related
band-by-band decompositions. We show that unlike for the full Z∗, the different band-by-band
values are not equal, and emphasize that one of them has a natural physical meaning in terms of
Wannier functions.

1. Introduction

The Born effective charge [1] (Z∗) is the equivalent, for crystalline insulating solid, of the
atomic polar tensor introduced for isolated molecules [2]. It is a dynamical charge related to
the macroscopic polarization induced by the collective displacements of nuclei belonging to a
given sublattice. In the study of the lattice dynamics of insulating crystals, it is considered as a
fundamental quantity, because it governs the amplitude of the long-range Coulomb interaction
between nuclei, and the splitting between longitudinal optic (LO) and transverse optic (TO)
phonon modes.

In simple materials, like ANB8−N binary crystals [3], the phonon eigenvectors are imposed
by symmetry. Infra-red measurements of the splitting between LO and TO modes allow
an accurate estimation of |Z∗|2/ε∞ and offer therefore an unambiguous way to extract the
amplitude of Z∗ from the experiment. However, for more complex materials like ABO3

compounds, LO and TO mode eigenvectors are not necessarily equivalent. The determination
of Z∗ from the experimental data is consequently not straightforward and requires the use
of some approximations [4]. For such compounds, the development of theoretical methods
giving direct access to Z∗ acquires therefore a specific interest.

Conventionally, the Born effective charge tensorZ∗
κ,αβ of nuclei belonging to the sublattice

κ is defined as the coefficient of proportionality relating, under the condition of zero
macroscopic electric field, the change in macroscopic polarization Pβ along the direction
β and the collective nuclear displacements of atoms κ along direction α, times the unit-cell
volume 	0:

Z∗
κ,αβ = 	0

∂Pβ

∂τκα

∣∣∣∣
E=0

. (1)

However, a thermodynamical equality relates the macroscopic polarization to a derivative of
the electric enthalpy Ẽ and another relationship connects the forces Fκ on the nuclei κ to a
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9180 P Ghosez and X Gonze

derivative of the electric enthalpy, so Z∗ can be alternatively defined as follows:

Z∗
κ,αβ = − ∂2Ẽ

∂Eβ ∂τκα
= ∂Fκ,α

∂Eβ

∣∣∣∣
τκα=0

. (2)

From these relationships, Z∗ can therefore be thought either as (i) the change of polarization
induced by the collective displacements of atoms κ , under zero field, (ii) a mixed second
derivative of the electric enthalpy or (iii) the derivative of the force induced on a nucleus κ by
a homogeneous effective electric field Eβ , at zero atomic displacement.

The three definitions are formally equivalent. However, they can lead to different
algorithms for the computation of Z∗ from first principles. Among the approaches which are
the most widely used, the first powerful and systematic procedure was introduced by Baroni,
Giannozzi and Testa [5], who suggested determining Z∗ from a linear response formalism
grounded on a Sternheimer equation. A different algorithm, based on a variational principle,
was later reported by Gonze, Allan and Teter [6], yielding a new alternative expression for Z∗.
Thanks to progress in the theory of the macroscopic polarization, Z∗ is also directly accessible
from the finite difference in polarization [7]. The first two algorithms were exclusively
implemented within the density functional theory (DFT) formalism while the last one also
allowed calculations of changes in polarization within other different one-electron schemes
(the Hartree–Fock method [8], model GW -approximations to many-body theory [9, 10], the
Harrison tight-binding model [11]) and the Hubbard tight-binding model [12].

Accurate predictions of the Born effective charges have been reported for a large variety
of materials. In some of these studies [9, 13–17], the decomposition of Z∗ into individual
contributions from separate groups of occupied bands emerged as a powerful tool for identifying
the microscopic mechanisms monitoring its amplitude. However, the physical interpretation
of these decompositions was never explicitly discussed. Moreover, unlike the case for the total
Z∗, contributions from individual groups of bands are not uniquely defined.

In the present paper, we aim at presenting the links between the theoretical frameworks
used nowadays to compute Z∗, and at deducing from this comparison the correct way to
develop a band-by-band analysis. We demonstrate that the natural decompositions arising
from equation (1) and equation (2) differ, although independent approaches (linear response,
Berry phase, electronic Wannier functions) to equation (2) are strictly equivalent provided that
the phases of the wavefunctions are correctly chosen.

The paper is organized as follows. In section 2, we describe the mathematical links existing
between the different expressions that can be used to determine the global value ofZκ,αβ within
the density functional formalism without yet referring to band-by-band decompositions. We
adopt the notation of references [18, 19]. In section 3, we discuss how contributions from
isolated sets of bands can be separated from each other. We identify different expressions
and discuss their meaning in terms of electronic Wannier functions. In section 4, we illustrate
our results using a numerical example, emphasizing that independent decompositions yield
in practice radically different values. Finally, in section 5, we reach a conclusion as to the
physically correct way of performing band-by-band decomposition of Z∗.

2. Different formulations of Z∗

For practical purposes, in what follows, the Born effective charge will be decomposed into
two contributions:

Z∗
κ,αβ = Zκδαβ + Zel

κ,αβ . (3)
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The first term, Zκ , is the charge of the nuclei (or pseudo-ion, in the case of pseudopotential
calculations), and can be trivially assigned. The second, Zel

κ,αβ , is the contribution due to the
electrons.

2.1. The first derivative of the polarization

A first straightforward approach for the determination of Z∗
κ consists in computing the

difference in macroscopic polarization between a reference state and a state where the atoms
belonging to the sublattice κ have been displaced by a small but finite distance �τκ,α . The
electronic contribution to Z∗ can be obtained as

Zel
κ,αβ = 	0 lim

�τκ,α→0

�Pel
β

�τκ,α
. (4)

In periodic systems, the change in electronic polarization in zero field can be computed from
the King-Smith and Vanderbilt formula [7]:

Pel
β = − 1

(2π)3
i

occ∑
n

s

∫
BZ

〈unk|∂/∂kβ |unk〉 dk (5)

where s is the occupation number of states in the valence bands (s = 2 in a spin-degenerate
system) and unk are the periodic parts of the Bloch functions. Taken independently, the matrix
elements of the previous equation are ill-defined, because the phase of the wavefunctions
at a given wavevector of the Brillouin zone is arbitrary, and thus unrelated to the phases at
neighbouring k-points. However, the integral on the right-hand side is a well-defined quantity,
which takes the form of a Berry phase of band n, as discussed by Zak [20].

The King-Smith and Vanderbilt definition is valid only under the constraint that the
wavefunctions fulfil the periodic gauge condition. This means that the periodic parts of the
Bloch functions must satisfy

unk(r) = eiG·runk+G(r). (6)

This condition does not unambiguously fix the phase of the wavefunctions at a given k-
point (not even at neighbouring k-points) but it imposes a constraint for wavefunctions at
distant wavevectors. It defines a topology in k-space, within which the polarization takes the
convenient form of a Berry phase.

When working within one-electron schemes (DFT, Hartree–Fock, . . . ), a second choice
of phase is present at another level. For the ground state, the Lagrange multiplier method,
applied to the minimization of the Hohenberg and Kohn functional under orthonormalization
conditions on the wavefunctions [22], gives the following equations:

Hk|umk〉 =
occ∑
n

�mn,k|unk〉. (7)

This condition, associated with the minimization of the Hohenberg and Kohn energy functional,
means that the application of the Hamiltonian to a given wavefunction generates a vector which
must stay within the Hilbert space defined by the set of unk-wavefunctions. We observe that a
unitary transformation between the wavefunctions will leave that Hilbert space invariant, and
equation (7) will remain satisfied provided that the matrix of Lagrange multipliers �mn,k is
transformed accordingly. In order to build Kohn–Sham band structures, the unitary transform
is implicitly chosen so as to guarantee that

�mn,k = δmnεm,k (8)
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in which case the εm,k correspond to the eigenvalues of the Kohn–Sham Hamiltonian and the
associated functions ud,mk are the Kohn–Sham orbitals. This choice is called the diagonal
gauge condition. Throughout this work, it will be emphasized by a subscript ‘d’.

We note that the periodic gauge condition connects wavefunctions at different k-points,
while the diagonal gauge condition fixes wavefunctions at a given k-point. The choice defined
by equation (8) is not mandatory, and the computation of the total energy, the density or
the Berry phase (equation (5)) will give the same value independently of the fulfilment of
equation (8). The diagonal gauge is the natural choice for the ground-state wavefunctions
while, as will be discussed later, another choice is usually preferred for the change in wave-
functions in linear response calculations.

Instead of approximating equation (1) from finite differences, it can be computed directly.
The combination of equations (1), (3) and (5) gives

Zel
κ,αβ = − 	0

(2π)3
i

occ∑
m

s

∫
BZ

[〈
∂unk

∂τκ,α

∣∣∣∣∂unk

∂kβ

〉
+ 〈unk|∂/∂kβ |∂unk/∂τκ,α〉

]
dk (9)

where the second expectation value can be worked out:∫
BZ

〈unk|∂/∂kβ |∂unk/∂τκ,α〉 dk =
∫
BZ

[
∂

∂kβ
〈unk|∂unk/∂τκ,α〉 −

〈
∂unk

∂kβ

∣∣∣∣ ∂unk

∂τκ,α

〉]
dk. (10)

In the last expression, the first term on the right-hand side is the gradient of a periodic quantity
integrated over the Brillouin zone. Within any periodic gauge, its contribution will be zero.
Using the time-reversal symmetry, we arrive therefore at the final expression:

Zel
κ,αβ = −2

	0

(2π)3
i

occ∑
n

s

∫
BZ

〈
∂unk

∂τκ,α

∣∣∣∣∂unk

∂kβ

〉
dk. (11)

The first derivatives of the wavefunctions, ∂unk/∂τκ,α and ∂unk/∂kβ , appearing in this
expression, can be computed by linear response techniques either by solving a first-order
Sternheimer equation [5, 21] or by the direct minimization of a variational expression as
described in references [6, 18].

We note that the choice of gauge will influence the value of the first derivative of unk,
although the integrated quantity Zel

κ,αβ must remain independent of this choice (in any periodic
gauge). Usually, the following choice is preferred in linear response calculations:〈

∂unk

∂λ

∣∣∣∣
p

∣∣∣∣umk

〉
= 0 (12)

for m and n labelling occupied states, and λ representing either the derivative with respect
to the wavevector or that with respect to atomic displacements. As emphasized by the
subscript ‘p’, this condition defines what is called the parallel gauge and ensures that the
changes in the occupied wavefunctions are orthogonal to the space of the ground-state occupied
wavefunctions. This projection on the conduction bands is not reproduced within the diagonal
gauge defined by the generalization of equations (7), (8) at the first order of perturbation, as
elaborated on in reference [22].

2.2. The mixed second derivative of the electric enthalpy

The Born effective charge also appears as a mixed second derivative of the electric enthalpy.
Therefore, as reported in equation (41) of reference [19], Zel

κ,αβ can be alternatively formulated
in terms of a stationary expression, involving the first-order derivative of the wavefunctions
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with respect to a collective displacement of atoms of the sublattice κ and the first-order
derivatives of the wavefunctions with respect to an electric field and to their wavevector†.

The mathematical equivalence of equation (11) and equation (41) of reference [19] is a
consequence of the interchange theorem but can be directly established from the stationary
character of the latter. Indeed, as the error on Z∗ is proportional to the product of the errors on
the first-order change in wavefunctions, if ∂unk/∂τκ,α was known exactly, a correct estimation
of Zel

κ,αβ could be obtained independently of the knowledge of ∂unk/∂Eβ . Putting therefore
∂unk/∂Eβ and the corresponding density changes in equation (41) of reference [19] to zero,
most of the terms cancel out and we recover equation (11), which when evaluated for the exact
∂unk/∂τκ,α must still correspond to a valid expression for Z∗.

2.3. The first derivative of the atomic force

By the same token as above, we can choose alternatively for ∂unk/∂τκ,α and the associated
density derivative to vanish in equation (41) of reference [19], and we still obtain a valid
expression for Z∗:

Zel
κ,αβ = 2

[
	0

(2π)3

∫
BZ

occ∑
n

s〈unk|∂v′
ext,k/∂τκα|∂unk/∂Eβ〉 dk

+
1

2

∫
	0

[
∂vxc0

∂τκα
(r)

][
∂n

∂Eβ
(r)

]∗
dr

]
. (13)

This equation corresponds to the third formulation of Z∗ in which it appears as the first
derivative of the force on the atoms κ with respect to an electric field (equation (2)). Indeed,
it is directly connected to the following expression of the force, deduced from the Hellmann–
Feynman theorem:

Fel
κ,α = 	0

(2π)3

∫
BZ

occ∑
n

s〈unk|∂v′
ext,k/∂τκα|unk〉 dk +

∫
	0

[
∂vxc0

∂τκα
(r)

]
[n(r)]∗ dr. (14)

Compared to equation (11) and equation (41) of reference [19], equation (13) has the
advantage that the computation of the first-order wavefunction derivative with respect to the
electric field perturbation is the only computationally intensive step needed to deduce the full
set of effective charges. We note however that the implementation of equation (13), rather
easy within a plane-wave–pseudopotential approach, is not so straightforward when the basis
set is dependent on the atomic positions, as in LAPW methods (additional Pulay terms must
be introduced).

3. Band-by-band decompositions

3.1. Displacement of the centres of gravity of Wannier functions

Inspired by a previous discussion by Zak [20], Vanderbilt and King-Smith [23] emphasized
that the macroscopic electronic polarization acquires a particular meaning when expressed in
terms of localized Wannier functions. The periodic parts of the Bloch functions unk(r) are
related to the Wannier functions Wn(r) through the following transformations:

unk(r) = 1√
N

∑
R

e−ik·(r−R)Wn(r − R) (15)

Wn(r) =
√
N	0

(2π)3

∫
BZ

eik·runk(r) dk. (16)

† This lengthy expression will not be reproduced here.
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From this definition, we deduce that
∂

∂kβ

unk(r) = 1√
N

∑
R

[−i(rβ − Rβ)]e
−ik·(r−R)Wn(r − R) (17)

where R runs over all real-space lattice vectors. Introducing this result in equation (5), we
obtain

Pel
β = s

	0

occ∑
n

∫
rβ |Wn(r)|2 dr. (18)

From this equation, the electronic part of the polarization is simply deduced from the position
of the centre of gravity of the electronic charge distribution, as expressed in terms of localized
Wannier functions. In other words, for the purpose of determining the polarization, ‘the true
quantum mechanical electronic system can be considered as an effective classical system of
quantized point charges, located at the centres of gravity associated with the occupied Wannier
functions in each unit cell’ [23].

We observe that equations (15) and (16) establish a one-to-one correspondence between
unk and Wn. As previously emphasized in section 3, when working within the diagonal gauge,
ud,nk becomes identified with the Kohn–Sham orbitals, so the associated Wd,n will correspond
to a single-band Wannier function. Within this specific gauge, we can therefore isolate Pm,β ,
the contribution of band m to the β-component of the polarization, by separating the different
terms in the sum appearing in equation (18):

Pel
m,β = s

	0

∫
rβ |Wd,m(r)|2 dr. (19)

If we take the derivative of the polarization with respect to a collective atomic displacement,
Zel
κ,αβ can be written in terms of Wannier functions as

Zel
κ,αβ =

occ∑
n

s

∫
rβ

[(
∂Wn(r)

∂τκ,α

∣∣∣∣
d

)∗
Wd,n(r) + (Wd,n(r))

∗ ∂Wn(r)

∂τκ,α

∣∣∣∣
d

]
dr. (20)

As for the polarization, this equation has a simple physical meaning. In response to an atomic
displacement, the electronic distribution is modified and the electronic contribution to Z∗ can
be identified from the displacement of the centres of gravity of the occupied Wannier functions.
Working within the diagonal gauge at any order of perturbation, we will be able to follow the
change of single-band Wannier functions along the entire path of atomic displacements. In the
previous expression, the contribution of band m to Zel

κ,αβ can be isolated:

[Zel
κ,αβ]m = s

∫
rβ

[(
∂Wm(r)

∂τκ,α

∣∣∣∣
d

)∗
Wd,m(r) + (Wd,m(r))

∗ ∂Wm(r)

∂τκ,α

∣∣∣∣
d

]
dr. (21)

This equation identifies the contribution from band m to the Born effective charge as 	0 times
the change of polarization corresponding to the displacement of a point charge s by a distance
equal to the displacement of the Wannier centre of this band. Equation (21) can also be
estimated from a finite-difference method by combining equations (4) and (19), providing an
easy way to decompose Zel

κ,αβ as soon as the Wannier functions of the system are known [17].
Alternatively, equation (21) can also easily be evaluated in reciprocal space:

[Zel
κ,αβ]m = −2

	0

(2π)3
i s

∫
BZ

〈
∂umk

∂τκ,α

∣∣∣∣
d

∣∣∣∣∂umk

∂kβ

∣∣∣∣
d

〉
dk. (22)

As Bloch and Wannier functions are related through a band-by-band transformation, the
contribution from band m to Z∗

κ,αβ in equation (22) keeps the same clear physical meaning as
in equation (21):

[Zel
κ,αβ]m = 	0 �Pel

m,β = 	0s �dβ (23)
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where �dβ is the displacement in direction β of the Wannier centre of band m induced by the
unitary displacement of the sublattice of atoms κ in direction α. This decomposition is strictly
equivalent to what is obtained when computing �Pel

m,β from finite differences either in real
space, using Wannier functions and equation (19), as reported by Marzari and Vanderbilt
[17], or within the Berry phase approach when separating band-by-band contributions to
equation (5), the reciprocal-space equivalent of equation (19).

In practical calculations, where each band can be thought of as a combination of well-
known orbitals, the displacement of the Wannier centre is associated with the admixture of
a new orbital character with the band and must be attributed to dynamical changes of orbital
hybridizations. As illustrated in some recent studies [9, 13–16], the decomposition of Z∗

appears therefore as a powerful tool for microscopic characterization of the bonding in solids.
Let us emphasize again that the previous decomposition in terms of a single band is

valid only if the diagonal gauge was used to define the Kohn–Sham wavefunctions, hence
the subscript ‘d’ in equations (19), (21) and (22). The ground-state wavefunctions are con-
ventionally computed within the diagonal gauge. However, in most calculations, the first
derivatives of these wavefunctions are computed within the parallel gauge. Within this choice,
the change in each Bloch function will be a mixing of different Kohn–Sham orbitals when the
perturbation is applied, so the associated change in the functions Wn, defined on the basis of
equation (16), will correspond to the change of a multi-band Wannier function. Evaluating
equation (21) or (22) within such a gauge, we will identify the displacement of a complex of
bands rather than that of a single band. In practice, the first-order derivatives of wavefunctions
in the diagonal gauge (dunk/dλ)|d can be deduced from those in the parallel gauge (dunk/dλ)|p
and the ground-state wavefunctions in the diagonal gauge ud,nk, by adding contributions from
the subspace of the occupied bands:

dumk

dλ

∣∣∣∣
d

= dumk

dλ

∣∣∣∣
p

−
occ∑
n�=m

〈ud,nk|∂H/∂λ|ud,mk〉
(εnk − εmk)

ud,nk. (24)

We note that this transformation (equation (24)) can present some problems when the
denominator vanishes: this happens when the valence energies are degenerate. The problem
can be partly bypassed by keeping a parallel transport gauge within the space of degenerate
wavefunctions. Practically, this means that we will only be able to separate the contributions
of disconnected sets of bands.

3.2. Other band-by-band decompositions

After focusing on equation (11), we now investigate the possible band-by-band decompositions
of equation (41) of reference [19] and equation (13). These expressions, unlike equation (11),
are not written as simple sums of matrix elements, each related to a single band. However,
individual contributions to equation (13) can be identified using the following decomposition
of the density:

n(r) = 1

(2π)3

∫
BZ

occ∑
n

su∗
nk(r)unk(r) dk. (25)

It gives

Zel
κ,αβ = 2

	0

(2π)3

∫
BZ

occ∑
n

s〈unk|∂v′
ext,k/∂τκα + ∂vxc0/∂τκα|∂unk/∂Eβ〉 dk (26)

for which the following decomposition is obtained, using the diagonal gauge wavefunctions:

[Z̃el
κ,αβ]m = 2

	0

(2π)3

∫
BZ

s〈ud,mk|∂v′
ext,k/∂τκα + ∂vxc0/∂τκα|(∂umk/∂Eβ)|d〉 dk. (27)
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This expression corresponds to the contribution of the electrons of band m to the force induced
on atom κ by a macroscopic field Eβ . However, it is not equivalent to equation (21) or
(22). Indeed, for a particular band m, the difference between matrix elements present in
equations (22) and (27) is (within a given gauge)

[〈umk|∂v′
ext,k/∂τκα + ∂vxc0/∂τκα|∂umk/∂Eβ〉] − [〈∂umk/∂τκ,α| − i ∂umk/∂kβ〉]

= − 1

2

∫
	0

Kxc(r, r
′)
[

∂n

∂τκα
(r)

]∗
∂nmk

∂Eβ
(r′) dr dr′

+
1

2

∫
	0

Kxc(r, r
′)
[
∂nmk

∂τκα
(r)

]∗
∂n

∂Eβ
(r′) dr dr′ (28)

where nmk(r) is shorthand notation for u∗
mk(r)umk(r). The summation of these differences

over all the bands and integration over the Brillouin zone gives zero, as expected. However, the
band-by-band difference, equation (28), does not vanish. This demonstrates that the quantity
defined on the basis of equation (27) is independent of that of equation (21) and has therefore
no specific meaning in terms of Wannier functions. Unlike equation (13), equation (41) of
reference [19] is not naturally convertible into a sum of independent band contributions.

4. Numerical comparison

The previous theoretical results can now be illustrated using a numerical example. In what
follows, we will consider the case of barium titanate (BaTiO3), a well-known ferroelectric
material which is stable at high temperature in a cubic perovskite structure and exhibits non-
trivial values of Z∗ [16].

Our calculations have been performed within the density functional theory and the local
density approximation [24]. For the exchange–correlation energy, we used a polynomial
parametrization [25] of Ceperley–Alder [26] homogeneous electron gas data. We adopted
a plane-wave–pseudopotential approach. We chose highly transferable extended norm-
conserving pseudopotentials as described in reference [27]. The Ba 5s, Ba 5p, Ba 6s, Ti 3s,
Ti 3p, Ti 3d, Ti 4p, O 2s and O 2p levels have been treated as valence states. The electronic
wavefunction has been expanded in plane waves up to a kinetic energy cut-off of 35 hartrees.
Integrals over the Brillouin zone have been replaced by sums over a 6 × 6 × 6 mesh of special
k-points. The Born effective charges have been computed in the cubic phase at the optimized
lattice parameter of 3.94 Å. They have been obtained from linear responses following the
scheme described in reference [19].

In table 1, we summarize the results obtained from independent formulations for the
titanium charge (Z∗

Ti). The decomposition of the totalZ∗ is provided, according to equation (22)
and equation (27), in the diagonal gauge and, according to equation (22), in the parallel gauge.
We also compare our results to those reported independently by Marzari and Vanderbilt [17],
obtained from a direct computation of the displacements of the centres of gravity of the
electronic Wannier functions.

As expected for this class of compounds [16], the total charge on the Ti atom is anom-
alously large (+7.25) and comparable in amplitude to the value of +7.16 obtained independently
using the Berry phase approach [28]. The main anomalous contribution (deviation from the
nominal value of the second column) is located in the O 2p bands. Similarly, the oxygen
charge along the Ti–O bond is anomalously large and equal to −5.71. The Ti and O anom-
alous charge contributions are related to each other and can be assigned to dynamical changes
of hybridization between O 2p and Ti 3d orbitals [16]. This was explicitly demonstrated for a
parent compound (KNbO3) by Posternak et al [29].
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Table 1. Band-by-band decompositions of the Born effective charge of the Ti atom in the cubic
phase of BaTiO3. The first line refers to the pseudo-ion charge while the other contributions
come from the different valence electron levels. The nominal values expected for a purely ionic
material are reported in the second column; band-by-band contributions presented in the next three
columns were computed from linear response first-principles calculations. The last column refers
to first-principles values deduced from the computation of Wannier functions [17].

Linear response Wannier functions

Diagonal gauge Parallel gauge Diagonal gauge
Reference
nominal charges From (22) From (27) From (22) From (21)

ZTi + 12.00 + 12.00 + 12.00 + 12.00 + 12.00

Ti 3s −2.00 −2.03 + 1.56 −0.36 −2.04

Ti 3p −6.00 −6.22 −9.54 −5.50 −6.19

Ba 5s 0.00 + 0.05 −0.36 0.00 + 0.04

O 2s 0.00 + 0.23 −1.56 −0.41 + 0.20

Ba 5p 0.00 + 0.36 + 1.47 + 0.10 + 0.31

O 2p 0.00 + 2.86 + 3.68 + 1.42 + 3.01

Z∗
Ti + 4.00 + 7.25 + 7.25 + 7.25 + 7.33

We observe that the global charge is equivalent independently of the approach, while this
is not the case for partial contributions coming from different isolated sets of bands. First,
the band-by-band decompositions obtained within the diagonal and parallel gauges are not
similar. This means that the unitary transform performed when changing the gauge strongly
mixes the different bands. Second, the results deduced from equations (22) and (27) within
the diagonal gauge are significantly different, demonstrating that the amplitude of the quantity
defined in equation (28) is not negligible. Third, the results obtained from equation (22) within
the diagonal gauge are comparable to those of Marzari and Vanderbilt [17] who explicitly
computed the electronic Wannier functions and estimated equation (21) using a finite-difference
technique combining equation (4) and equation (19). This illustrates the physical interpretation
of equation (22) in terms of localized Wannier functions: the contributions describe the
displacement of the Wannier centre of each given set of bands, induced in response to the
displacement of the Ti atom.

5. Conclusions

In conclusion, the Born effective charges can be computed from first principles using diff-
erent techniques and algorithms. The global charge is a gauge-invariant quantity and is
obtained independently of the approach, while special care is needed to separate individual
contributions from separate groups of occupied bands. When using linear response techniques,
the identification of band-by-band contributions, equivalent to those obtained within the
Berry phase approach, requires the use of equation (22), when working within the diagonal
gauge. The contribution [Zel

κ,αβ]m is then directly related to the displacement in direction β

of the Wannier centre of band m, when displacing the sublattice of atoms κ in direction α.
The diagonal gauge condition is mandatory for identifying single-band contributions. The
results obtained are conceptually and numerically different from those computed when using
equation (27), independently of the choice of gauge.
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